wrog: (Default)
Well okay, I guess there is a way to get Trilorne to hover.

If we're willing to toss the usual definition of "North" (rotation axis points that way), we can put the sun over the equator, and then we can have it be tide-locked. Meaning this planet is basically Mercury but farther away so that only the stuff directly underneath the sun is getting fried to shit.

And maybe having an actual atmosphere will help, too, in various ways, though I can't imagine there not being freaky weather patterns, e.g., some kind of permanent cyclone storm around the solar-maximum point wherever it happens to be at the moment, but that won't damage the story too much because nobody ever goes to the Fire Lands anyway.

The Wall then runs around surprise )
wrog: (ring)

So there's this Arthur C. Clarke short story, "The Wall of Darkness" (1949). I read it as a kid and found it really haunting. Clarke does Haunting really well.

If you haven't read it already and want to go read it before I completely and totally ruin it, feel free.

(I found the whole thing by searching for "Trilorne" in google, which then gave me a google books hit; we'll see how much longer The Algorithm lets people do that).

But you've already had 70 years, so… onward…

let the ruining begin... )
wrog: (Default)

Continued from Part 3, what happens when there is no "parallel", the rules for circles aren't what you thought they were, and so on.

Napier's Rules

So how does trigonometry work in this world?

See, I belatedly realized that spewing walls of equations like this is not actually going to be much use when you're stuck in a rowboat in the middle of the North Atlantic having to navigate by the stars with no cell phone and no GPS. Because, chances are, you also have No Internet, and then my blog entries with their handy tables go to waste.

It would be far better if I can teach you how to derive these relationships instead, i.e., in a way that you might actually be able to vaguely remember while sitting in a boat in the middle of the North Atlantic.

But first I'm going to introduce a bit of gratuitous extra notation. Write

ᶜᵒθ

— pronounce it "co-theta" if you want — to mean (90° − θ). I do this because:

  1. I can,
  2. it's less typing,
  3. it's way less degree vs. radian waffling, which I already do too much of,
    but also,
     
  4. you get all of the following useful and amusing equivalences (no, really; read them aloud):
 
sin ᶜᵒθ = cos θ
cos ᶜᵒθ = sin θ
tan ᶜᵒθ = cot θ(= 1/tan θ, in case you've forgotten)
cot ᶜᵒθ = tan θ
csc ᶜᵒθ = sec θ(= 1/cos θ, and no, I don't know why reciprocals get these special names)
sec ᶜᵒθ = csc θ(= 1/sin θ, because, seriously, WTFF?)

You'd almost think they planned it this way.

Hopefully, it goes without saying that ᶜᵒ(ᶜᵒθ) = θ, except I had to go and say it, didn't I? (Damn.)

And now let's start with a right triangle, with vertices/angles and sides/lengths labeled a,b,c,A,B, the way you usually see it in trigonometry class, and then derive stuff about it )

wrog: (Default)

Continued from Part 2, exploring the benighted universe where "parallel" is Not a Thing.

How circles work

So, to review the weird things we've seen so far:

  • When we have a circle radius of 90°, otherwise known as a straight line, and we're traversing the circumference, i.e., measuring the total length along it as we sweep out 360° from the pole in the middle, we get 360° worth of path (phrasing it this way so that if this turns out we're on a projective plane rather than a sphere and what we're really doing is traversing the same 180° path twice, I won't have been lying to you), which, being 4 times the radius, is slightly less than one might have expected (2π being roughly 6.28).
     
  • If we attempt a circle of radius of 180°, we stay firmly nailed to the antipode of the center, our circumference traversal goes nowhere and thus we get a circumference of zero.

Meaning if we have to explain to the residents what "π" is, we're going to lose horribly. Best we can do is, "So: Circumference to radius? That's a ratio. It's literally all over the map. But as radius approaches zero, once you're under 90°, you'll notice the ratio is always getting bigger. If you work at it, you can prove that it's bounded and it converges to this weird transcendental number like e. And, no, don't ask us how we came up with this…"

We need to understand better how curved paths work. and so ye shall... )

wrog: (Default)

Continued from Part 1, in which we discover at least one consequence to doing away with the concept of "parallel lines".

Let's talk about Area

Having noticed that isoceles right triangles give us a natural way to define/measure distances, we see that we can do area this way as well. That is, the area of ΔAPX is clearly the angle at P times some constant, which we may as well just take to be 1 if we haven't defined a unit of area yet. so let's do that ... )

wrog: (Default)

So, as part of my possibly-continuing "Geometry on Drugs" series, here is a prequel to my post on spherical geometry, which was more of a "hey, this is useful" post in which much there's a whole lot you're expected to take on faith. It was really more intended for the hardcore engineering type who needs to see that use case up front.

This version is going back to first principles, where we do the axiom wanking and you (hopefully) get a sense of why things turn out the way they do.

Also, this is the practice run before I launch into the Essence of Hyperbolic Geometry, so, … Onward …

The Geometry Axiom Everybody Hates

Start with this diagram and the inevitable question that comes up:

Start with a line ℓ and a point A not on it. How do you put a line through A that doesn't intersect ℓ?

(In other news, I am now convinced that the Unicode committee contained at least one disgruntled geometry teacher. How else to explain why there's this isolated script ℓ code point?)

We can drop a perpendicular from A meeting ℓ at some point X, and then it's obvious that the line you want (dotted) is the one perpendicular to XA. If you tilt it even slightly away from 90°, then it simply must intersect ℓ somewhere.

Proof by diagram. We're allowed to do that, right? Read more... )

wrog: (rockets)

a.k.a., Space 11: How to do Interstellar Navigation

Various antecedents you may want to have peered at first:

Today's post is about Hyperbolic Geometry, wherein you learn what those "Warning, Evil, Don't Look" columns are about. It's now safe to look; well okay, no it isn't, but too late! AHAHAHAHAHAHAHA.

Hyperbolic geometry is basically Geometry On Drugs and we know that's never going lead anywhere good.

To be fair, Spherical Geometry is arguably also on drugs, but at least it's easier to explain in that, having had lots of experience with basketballs and whatnot, you already know what a sphere is. Having a concrete place for the "points" to live, I can then tell you

  • what "lines" are (great circles, or planes slicing the sphere through the origin / center of the sphere),
  • how to measure "distance" along a "line" segment (measure angle between endpoints from the center of the sphere),
  • how to measure "angles" between "lines" (the planes will intersect; there's an angle there; done), and
  • what "circles" are (they're um, circles, … or, if you like, planes that don't necessarily go through the origin, or cones coming out of the origin; whatever works for you),

and then you're basically good to go, ready to do all of the geometry/trigonometry you could ever want, once you've heeded my warnings that Certain Things Will Be Different (no such thing as "parallel", triangles add up to 180 plus area instead of just 180, do not feed them after midnight, etc…).

Unfortunately, the place where we're Doing Geometry today is this inside-out Hyperboloid Sheet Thing with a fucked up metric, … and if you've actually seen one of those in real life, I will be very surprised, especially since it's not something that can exist in ordinary 3D space. Oddly enough, it will end up relating to something you do have day-to-day experience with, namely (cue reverb and James Earl Jones voice)… Your Future,… but I'm not sure how much help that's going be in visualizing it.

bring on the drugs... )
wrog: (toyz)

So I've arbitrarily decided that more people need to know about spherical trigonometry. (e.g., just in case the GPS gets destroyed and we're stuck having to do our own navigation again.)

It's really the same solving of triangles that you learned to do in high school geometry/trig, i.e., gimme side-angle-side or angle-side-angle to nail down what the triangle actually is, then use Law of Sines or Law of Cosines or some combination thereof to work out the previously unknown sides/angles that you care about.

It's just that some of the rules for spherical trig are a Little Bit Different.

So, jumping right into the deep end, here's an application inspired by recent events:

You, an observer stationed on planet Earth at some particular latitude, want to know where the sun is going to be in the sky at some particular time of day, some particular day of the year.
And, cutting to the chase, here's a triangle to solve:

If you know b, A, c (side, angle, side), you can solve for a (opposite side) using the Law of Cosines

cos a = cos b cos c + sin b sin c cos A
and then B (next angle) using the Law of Sines
sinB/sinb = sinA/sina = sinC/sinc
...math wanking continues... )

Looking For ... ?

my posts on:


Page generated Jun. 25th, 2025 04:03 pm
Powered by Dreamwidth Studios